3Blue1Brown Series

3Blue1Brown Series  - Серіал (2016)

Оригінальна назва

3Blue1Brown Series

Випущено

06.08.2016

Жанр

Документальний

Статус

Поновлено

Кількість сезонів

4

Кількість епізодів

38

Опис

3Blue1Brown is a channel about animating math, in all senses of the word animate.

Сезони

Сезон 1

Сезон 1

16 серій

06.08.2016

A geometric understanding of matrices, determinants, eigen-stuffs and more.

Переглянути епізоди
Серія 1

1. Серія 1

06.08.2016

Kicking off the linear algebra lessons, let's make sure we're all on the same page about how specifically to think about vectors in this context.

Серія 2

2. Серія 2

07.08.2016

The fundamental vector concepts of span, linear combinations, linear dependence, and bases all center on one surprisingly important operation: Scaling several vectors and adding them together.

Серія 3

3. Серія 3

07.08.2016

Matrices can be thought of as transforming space, and understanding how this work is crucial for understanding many other ideas that follow in linear algebra.

Серія 4

4. Серія 4

09.08.2016

Multiplying two matrices represents applying one transformation after another. Many facts about matrix multiplication become much clearer once you digest this fact.

Серія 5

5. Серія 5

10.08.2016

What do 3d linear transformations look like? Having talked about the relationship between matrices and transformations in the last two videos, this one extends those same concepts to three dimensions.

Серія 6

6. Серія 6

11.08.2016

The determinant of a linear transformation measures how much areas/volumes change during the transformation.

Серія 7

7. Серія 7

16.08.2016

How to think about linear systems of equations geometrically. The focus here is on gaining an intuition for the concepts of inverse matrices, column space, rank and null space, but the computation of those constructs is not discussed.

Серія 8

8. Серія 8

16.08.2016

Because people asked, this is a video briefly showing the geometric interpretation of non-square matrices as linear transformations that go between dimensions.

Серія 9

9. Серія 9

24.08.2016

Dot products are a nice geometric tool for understanding projection. But now that we know about linear transformations, we can get a deeper feel for what's going on with the dot product, and the connection between its numerical computation and its geometric interpretation.

Серія 10

10. Серія 10

01.09.2016

This covers the main geometric intuition behind the 2d and 3d cross products.

Серія 11

11. Серія 11

03.09.2016

For anyone who wants to understand the cross product more deeply, this video shows how it relates to a certain linear transformation via duality. This perspective gives a very elegant explanation of why the traditional computation of a dot product corresponds to its geometric interpretation.

Серія 12

12. Серія 12

17.03.2019

This rule seems random to many students, but it has a beautiful reason for being true.

Серія 13

13. Серія 13

11.09.2016

How do you translate back and forth between coordinate systems that use different basis vectors?

Серія 14

14. Серія 14

15.09.2016

A visual understanding of eigenvectors, eigenvalues, and the usefulness of an eigenbasis.

Серія 15

15. Серія 15

07.05.2021

How to write the eigenvalues of a 2x2 matrix just by looking at it.

Серія 16

16. Серія 16

24.09.2016

This is really the reason linear algebra is so powerful.

Сезон 2

Сезон 2

12 серій

28.04.2017

The goal here is to make calculus feel like something that you yourself could have discovered.

Переглянути епізоди
Серія 1

1. Серія 1

28.04.2017

In this first video of the series, we see how unraveling the nuances of a simple geometry question can lead to integrals, derivatives, and the fundamental theorem of calculus.

Серія 2

2. Серія 2

29.04.2017

Derivatives center on the idea of change in an instant, but change happens across time while an instant consists of just one moment. How does that work?

Серія 3

3. Серія 3

30.04.2017

A few derivative formulas, such as the power rule and the derivative of sine, demonstrated with geometric intuition.

Серія 4

4. Серія 4

01.05.2017

A visual explanation of what the chain rule and product rule are, and why they are true.

Серія 5

5. Серія 5

02.05.2017

What is e? And why are exponentials proportional to their own derivatives?

Серія 6

6. Серія 6

03.05.2017

Implicit differentiation can feel weird, but what's going on makes much more sense once you view each side of the equation as a two-variable function, f(x, y).

Серія 7

7. Серія 7

04.05.2017

Formal derivatives, the epsilon-delta definition, and why L'Hôpital's rule works.

Серія 8

8. Серія 8

05.05.2017

What is an integral? How do you think about it?

Серія 9

9. Серія 9

06.05.2017

Integrals are used to find the average of a continuous variable, and this can offer a perspective on why integrals and derivatives are inverses, distinct from the one shown in the last video.

Серія 10

10. Серія 10

07.05.2017

A very quick primer on the second derivative, third derivative, etc.

Серія 11

11. Серія 11

07.05.2017

Taylor polynomials are incredibly powerful for approximations, and Taylor series can give new ways to express functions.

Серія 12

12. Серія 12

19.05.2018

A visual for derivatives which generalizes more nicely to topics beyond calculus.

Сезон 3

Сезон 3

4 серій

05.10.2017

An overview of neural networks.

Переглянути епізоди
Серія 1

1. Серія 1

05.10.2017

Introduction to neural networks.

Серія 2

2. Серія 2

16.10.2017

The goal of this video is to introduce the idea of gradient descent and to analyze a specific network.

Серія 3

3. Серія 3

03.11.2017

What's actually happening to a neural network as it learns?

Серія 4

4. Серія 4

03.11.2017

This one is a bit more symbol heavy, and that's actually the point. The goal here is to represent in somewhat more formal terms the intuition for how backpropagation works in part 3 of the series, hopefully providing some connection between that video and other texts/code that you come across later.

Сезон 4

Сезон 4

6 серій

31.03.2019

An overview of differential equations.

Переглянути епізоди
Серія 1

1. Серія 1

31.03.2019

How do you study what cannot be solved?

Серія 2

2. Серія 2

21.04.2019

The heat equation, as an introductory PDE.

Серія 3

3. Серія 3

16.06.2019

Boundary conditions, and setup for how Fourier series are useful.

Серія 4

4. Серія 4

30.06.2019

Fourier series, from the heat equation to sines to cycles.

Серія 5

5. Серія 5

07.07.2019

Euler's formula intuition from relating velocities to positions.

Серія 6

6. Серія 6

01.04.2021

General exponentials, love, Schrödinger, and more.

Світлини

/Ik4yToTnFtz1Ru284fZ87R7WSN.jpg/iLOa03aeBNc2S6lGLpJR0MQEKgu.jpg
Asset 4

Цей веб-сайт використовує TMDB та API TMDB, але не схвалений, не сертифікований чи іншим чином затверджений TMDB.